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Abstract. In regions with abundant and diverse freshwater resources, it is difficult and
costly to survey all lakes at the level required to detect invasive plants. Effective allocation
of monitoring resources requires tools that identify waterbodies where exotic species are
most likely to invade. We developed and tested models that predict conditions in which
Eurasian watermilfoil, Myriophyllum spicatum, is most likely to survive and successfully
colonize. We used logistic regression to model the likelihood of M. spicatum presence or
absence using a suite of biological, chemical, and physical lake characteristics which are
easily obtainable from public databases. We evaluated model fit by the Aikake criterion
and model performance by the percentage of misclassification errors as well as the costs
associated with acquiring data for variables modeled. Several models fit our data well,
misclassifying only 1.3–11.0% of the lakes where M. spicatum was observed, and used
relatively inexpensive landscape variables (percent forest cover in a drainage basin, presence
and type of public boat launch, and bedrock type) that typically exist as information layers
in geographic information systems (GISs) or recreational atlases. We found that the most
important factors affecting the presence or absence of M. spicatum were those that influence
water quality factors known to impact M. spicatum growth, rather than factors associated
with human activity and dispersal potential. In particular, the amount of forest cover in the
lake watershed was consistently important and could control the level of dissolved inorganic
carbon in lakes, one of the factors known to affect M. spicatum growth rates. Factors such
as the number of game fish species and number and types of boat ramps or proximity to
roads were generally less important lake characteristics. Our models can be useful tools
for developing management strategies to prevent or slow the spread of M. spicatum and
aquatic invaders, such as the zebra mussel, that can attach to it and thus be dispersed. Our
models also exemplify a general approach for slowing or stopping the spread of other
invading species.

Key words: aquatic macrophytes; habitat suitability; invasive species; logistic regression; mon-
itoring invasive species in lakes; Myriophyllum spicatum.

INTRODUCTION

Invasions by exotic species are unfortunately becom-
ing a common occurrence, and are often linked to a
decrease in the relative abundance and richness of na-
tive species in communities. In most regions of the
world, 10–30% of the flora consists of exotic species
(Heywood 1989, U.S. Congress, Office of Technology
Assessment 1993). Once established, exotics are often
impossible to eradicate. It may be possible, however,
to slow their invasions and protect areas of concern by
predicting where they are most likely to spread. Ac-
curately predicting patterns of spread requires knowl-
edge of physiological and ecological limitations to the
successful colonization, establishment, and growth of
exotic species. Because it is difficult to monitor for
invasive species across large geographic areas, we de-
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veloped models that identify suitability of habitats, us-
ing existing, accessible data. The models provide a
basis for prioritizing often-limited resources for mon-
itoring and managing invasions. Similar models have
been effectively used to predict and monitor the in-
vasion of the zebra mussel, Dreissena polymorpha
(Ramcharan et al. 1992, Koutnik and Padilla 1994).

Eurasian watermilfoil, Myriophyllum spicatum L.,
(hereafter referred to as milfoil) exists on every con-
tinent except Antarctica, and is native to Europe, Asia,
and Northern Africa (Couch and Nelson 1985). The
earliest confirmed voucher specimen in North America
was collected in 1942 in Washington, D.C. (Couch and
Nelson 1985). In subsequent decades its range in-
creased to include most of the eastern part of the con-
tinent as far north as Ontario and Quebec provinces of
Canada, and most of the western part of the continent
of North America as far north as Vancouver Island and
the Okanagan Valley in the province of British Colum-
bia. The earliest milfoil voucher specimens in Wis-
consin were recorded in 1967 (Pewaukee Lake, Wau-
kesha County), and in 1968 (Fish Lake, Dane County).
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FIG. 1. Invasion of Wisconsin counties by Eurasian watermilfoil (Myriophyllum spicatum). Invasion is shown (A) by year
(source: Engels 1997), and (B) as the percentage of lakes invaded in counties (source: Buchan 1997). Counties within the
bold outline in (A) are those in which authors surveyed lakes for milfoil presence/absence.

By 1980 milfoil had spread to 11 other counties in
southeastern Wisconsin. It currently exists in surface
waters in two-thirds of Wisconsin’s counties (Fig. 1A).

Milfoil is a submersed, perennial aquatic herb that
typically grows where water is one to four meters deep
(Nichols and Shaw 1986) but is found in water up to
10 m in depth (Grace and Wetzel 1978). It obtains most
of its nutrients from the sediment through an adven-
titious root system (Barko and Smart 1980, Carignan
and Kalff 1980). Reproduction is both sexual and asex-
ual, but dispersal occurs primarily by fragments (Mad-
sen et al. 1988, Hartleb et al. 1993). Milfoil fragments
are created both by autofragmentation after flowering,
and by disturbances such as water turbulence and hu-
man activities. Interlake fragment transport may be
caused by several dispersal mechanisms, including

wind, waterfowl, water flow between connected wa-
terbodies, and human-related activities. Motorboats
and boat trailers, however, are the dispersal mecha-
nisms most often cited for interlake transport of milfoil
fragments (Scales and Bryan 1979, Johnstone et al.
1985, Smith and Barko 1990, Johnson and Carlton
1996).

Several characteristics have enabled milfoil to dom-
inate the macrophyte communities that they invade.
These include maintaining a large biomass throughout
the winter, rapid and early seasonal growth that out-
competes neighboring macrophytes for light and sed-
iment nutrients (Madsen et al. 1991), and production
of phenolic compounds that deter herbivores and in-
hibit algal growth (Gross and Sutfeld 1994, Gross et
al. 1996). By forming monotypic beds, milfoil has also
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negatively impacted the richness, diversity, and distri-
bution of benthic invertebrate species (Gibbons et al.
1987) and fish (Keast 1984, Truelson 1985, Frodge et
al. 1990, 1991).

In addition to changing ecosystem function, milfoil
becomes a human nuisance by forming dense mats on
water surfaces that reduce open area in littoral zones
and wash up on shorelines, thereby reducing aesthetic
appeal of lakes and areas available for swimming and
boating. Depending on the size and location of milfoil
populations in surface waters, water flow and discharge
may be altered, resulting in flooding or interference
with municipal or industrial operations (Bates et al.
1985).

Several factors may limit the growth and distribution
of milfoil, including light availability, temperature, in-
organic carbon, and sediment composition. Milfoil
grows under a range of trophic conditions, preferring
productive lakes (Smith and Barko 1990). In productive
lakes milfoil is more likely to be limited by the supply
rate of dissolved inorganic carbon than by the pool of
other nutrients (Adams et al. 1978, Titus and Stone
1982, Maberly and Spence 1983, Smart and Barko
1986, Smith and Barko 1990). Milfoil mobilizes nu-
trients from both ambient water and sediment, prefer-
ring fine-textured sediments with 10–25% organic mat-
ter content (Nichols and Mori 1971, Madsen 1982).
Substrate texture that is either coarse (sand or gravel)
or flocculent may impede milfoil root anchorage (Nich-
ols and Shaw 1986). Efforts to mechanically control
milfoil may promote and sustain milfoil establishment
by increasing fragmentation (Carpenter 1980).

Because freshwater habitats are disjunct, and can be
numerous, as in the Laurentian Great Lakes region, it
can be difficult for resource managers to monitor all
lakes to detect the presence of invasive species. Ap-
plying a model that predicts the likelihood of milfoil
establishment provides a mechanism for prioritizing
the allocation of limited resources toward detection ef-
forts. Indeed, such prioritization of management efforts
may result in slowing the further invasion of habitats
by enabling resource managers to eliminate nascent
colonies that act as new invasion sources or stepping
stones for further spread (Moody and Mack 1988,
Buchan 1997, Buchan and Padilla 1998). The goals of
this study were to identify important parameters that
predict the likelihood of milfoil invasion into lakes
using data that usually exist in publicly available da-
tabases and to provide a useful tool to enhance milfoil
detection efforts. We were able to well document spa-
tial and temporal patterns of milfoil presence/absence
among Wisconsin lakes due to monitoring efforts by
the state for the past 30 years. Thus, we used logistic
regression analysis to test whether a suite of biological,
physical, and chemical lake characteristics are likely
to measure or correlate with factors influencing milfoil
growth and/or dispersal. The characteristics we used

are available in public databases and could predict
lakes in which milfoil was most likely to occur.

While many data can be retrieved from existing da-
tabases, there may be instances in which data are either
unavailable or too costly to obtain. Therefore, to de-
termine how sensitive model results were to specific
variables, variables were individually eliminated and
the analysis was repeated. We evaluated models by
comparing the cost of included variables versus pre-
dictive accuracy.

METHODS

Data

Data on milfoil presence/absence was collected in
the field (Fig. 1A) and from records maintained by the
Wisconsin Department of Natural Resources (WDNR),
the Wisconsin Geological and Natural History Survey
(WGNHS), and three herbaria located at the University
of Wisconsin–Madison, University of Wisconsin–Osh-
kosh, and the Milwaukee Public Museum. Although
668 records of milfoil presence/absence were com-
piled, we used only 404 records because for 264 records
data were missing for some of the independent vari-
ables. The total sample size for our analysis (N 5 404)
consisted of 106 of our field survey records, 294 re-
cords from the WDNR (Engels 1997 and WDNR, un-
published data), and one and three records, respec-
tively, from the UW–Oshkosh herbarium and the mu-
seum (University of Wisconsin–Oshkosh, herbarium
curators, unpublished data) respectively. To increase
the probability of including lakes where milfoil could
not survive rather than lakes that could support milfoil
but have not been invaded yet, we limited our field
survey to lakes in southeastern Wisconsin, the region
first invaded by milfoil, and where exposure to milfoil
was most likely. Since most existing records in south-
eastern Wisconsin came from lakes with public boat
access, we surveyed all lakes without public boat
launches (N 5 38) in this region (18 counties) (Fig.
1A) that were accessible either by public property or
at the permission of private landowners. Where lake
density was greatest in the most northern county in this
region we sampled, in addition, a random selection of
10 lakes without public boat launches. The remaining
58 samples in our field survey were collected from
lakes with public boat launches.

To assess presence/absence of milfoil in the field we
used the milfoil sampling protocol established by the
WDNR after 1992: shoreline and shallow littoral areas
around boat launches were sampled first, followed by
a transect paralleling the entire lake shoreline. We sam-
pled transects every 100–200 m by tossing a rake 4–
6 times, allowing it to sink to the lake bottom, and
examining and identifying the retrieved submersed spe-
cies.

To develop predictive models, we compiled existing
information from publicly accessible data sources
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(Wisconsin Surface Water Inventory [SWI] and U.S.
Environmental Protection Agency Storage and Retriev-
al database [STORET], both accessible by contacting
C. Tiegs [WDNR Bureau of Fisheries Management and
Habitat Protection, Monitoring Section, Madison Wis-
consin, USA]; and GIS coverages maintained by the
WDNR, accessible by contacting L. Perry [WDNR Bu-
reau of Enterprise Information Technology and Appli-
cations, Geographic Services Section, Madison, Wis-
consin, USA]), and collected data in the field where
necessary (Table 1). During model development and
validation we included parameters for chemical, phys-
ical, biological, morphological, and anthropogenic var-
iables likely to influence milfoil growth (Nichols and
Mori 1971, Adams et al. 1978, Carpenter 1980, Madsen
1982, Titus and Stone 1982, Maberly and Spence 1983,
Smart and Barko 1986, Smith and Barko 1990) and
dispersal (Scales and Bryan 1979, Johnstone et al.
1985, Smith and Barko 1990, Johnson and Carlton
1996) (Table 1). These variables may be categorized
as follows: (1) those affecting human lake access, and
potentially milfoil dispersal (distance of lakes from
highways, type of public boat launch, and number of
residences and boat launches on lakes); (2) those in-
fluencing milfoil growth conditions, including data
measured in individual lakes (fine spatial resolution)—
alkalinity, pH, Secchi depth, water color, substrate type,
and water source—and across landscapes (coarse spa-
tial resolution)—phosphorus (1:2 000 000), bedrock
type (1:250 000), and land use in drainage basin; and
(3) those that may attract human lake activity and could
affect milfoil growth (lake maximum depth, lake area,
littoral zone area, and relative abundance of game fish
species). The two fish species included in our analysis,
smallmouth bass (Micropterus dolomieui Lacepede),
and walleye (Stizostedion vitreum (Mitchill)), were
chosen because they were game species and, therefore,
their measured relative abundance was likely correlated
with human fishing activity, a potential milfoil dis-
persal vector; the relative abundance of the two species
was relatively uncorrelated (r , 0.5); and their geo-
graphic distribution covered the milfoil sample area
(Becker 1983).

Values for parameters of pH and alkalinity were both
obtained from the SWI and STORET databases and
measured in the field, using a LaMotte alkalinity test
kit (LaMotte Company, Chestertown, Maryland, USA)
and a Hanna pH probe (Hanna Instruments, Woon-
socket, Rhode Island, USA). The STORET database
contained multiple records per sample station, reflect-
ing time and depth series data. Because milfoil grows
in the epilimnion, we retained epilimnetic records be-
tween 27 April and 5 October. We averaged values for
pH and alkalinity over this time period because mea-
surements may vary according to diel and temperature
changes, and because sampling dates and times were
not standardized throughout the data set. We also av-
eraged values when measurements from multiple sourc-

es existed. We calculated lake littoral area by subtract-
ing existing values (SWI) for lake area .6 m deep from
total lake area. We used a 6 m threshold depth because
the SWI database included a value for lake area .20
ft. which we converted (rounded to a whole number)
to SI units. This variable was used in our calculation
of lake littoral area.

Categorical data were included in regression models
as indicator variables, and the most common category
was used as the reference category. Water color was
coded as clear (reference class), green, brown due to
suspended sediment, and brown due to dissolved tan-
nins. Water color was also coded as a dichotomous
variable (clear or not clear) to see whether this was a
better classification for model development. Lake water
supply was classified using the Wisconsin Department
of Natural Resources (1995) system, as drainage (lakes
have both inlet and outlet and are primarily fed by
stream drainage), seepage (lakes lack both inlet and
outlet, and are primarily fed by precipitation or runoff,
supplemented by groundwater), spring fed (lakes lack
inlet but have outlet, and are primarily fed by ground-
water), and drained (lakes lack inlet, have a continu-
ously flowing outlet, and are primarily fed by precip-
itation and runoff). We recognized three categories of
lake boat launches: (1) public launches designed for
motor boats (the largest category, including lakes with-
out public launches connected by navigable water to
lakes with public motorboat launches); (2) public
launches where motorboats were not permitted, or lakes
without launches that were accessible to boat trailers
from a road; and (3) launches or lakes without launches
accessible from private property or from a foot trail.
As an alternative classification we coded boat launch
as a dichotomous variable: with (categories 1 and 2
above) or without (category 3) public access.

Variables measured as percentages (substrate types,
littoral area, and land cover type) were arcsine trans-
formed for analysis (Zar 1984). We log transformed
(log10) lake size because it exhibited a large range in
measurement that could positively bias its significance
in a logistic regression analysis.

We used spatial analysis in a GIS (ARC/INFO; ESRI
1992) to determine phosphorous classification, bedrock
type, and distance from highways for lakes. For each
lake with known milfoil presence/absence, we obtained
lake center coordinates from the U.S. Geological Sur-
vey Geographic Names Information database (1:
24 000)4 or from USGS 7.59 topographic maps (1:
24 000). We projected coordinates to the Wisconsin
Transverse Mercator coordinate system, and created a
GIS coverage of lake centroids (1:24 000). Lake phos-
phorous (total, unfiltered) classification (1:2 000 000)
and bedrock type (1:250 000) beneath each lake were
determined by intersecting the lake coverage with re-
spective physical feature coverages. Phosphorus clas-

4 URL 5 ^http://mapping.usgs.gov/www/gnis&
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TABLE 1. Data included in logistic regression analysis (data are not transformed; N 5 404).

Variable Units Source Classification

Mean 6 1 SE,
or percentage of lakes

With milfoil Without milfoil

Eurasian watermilfoil presence or absence WDNR, Field categorical 40% 60%
Lake area km2 SWI continuous 2181.3 6 395.4 1406.4 6 246.6
Maximum depth m SWI, WDNR continuous 9.8 6 0.6 8.9 6 0.4
Littoral area percentage of total

lake area
SWI continuous 58.7 6 1.7 59.0 6 1.6

Alkalinity (CaCO3) mg/L STORET, SWI, Field continuous 162.8 6 5.0 99.9 6 4.4
pH STORET, SWI, Field continuous 8.3 6 0.0 7.7 6 0.1
Phosphorous class mg/L WDNR ordinal

,5 0.0% 0.0%
5–9 0.0% 0.0%

10–14 5.7% 24.8%
15–19 2.0% 2.2%
20–24 0.7% 10.9%
25–29 21.8% 6.2%
30–50 0.0% 0.0%

.50 9.9% 15.8%
Secchi depth m SWI, Field continfous 2.3 6 0.1 2.7 6 0.1
Water color presence or absence SWI, Field categorical

Clear 24.6% 34.3%
Green 5.3% 4.6%
Brown–sediment 4.3% 7.6%
Brown–stained 6.3% 12.9%

% Substrate percentage of total
lake area

SWI continuous

Sand 32.9 6 2.1 38.9 6 2.0
Gravel 14.0 6 1.4 10.8 6 1.1
Rock 1.4 6 0.4 4.3 6 0.7
Organic 50.7 6 2.3 45.9 6 2.2

Bedrock type presence or absence WDNR ordinal
Igneous/volcanic/

metamorphic
4.5% 23.0%

Sandstone 10.6% 26.7%
Carbonate 25.0% 10.2%

% Drainage basin in
agriculture

m2 SWI continuous 50.4 6 2.5 29.4 6 2.1

% Drainage basin
forested

m2 SWI continuous 17.0 6 2.5 55.4 6 2.7

Water source presence or absence SWI categorical
Drainage 21.3% 26.7%
Seepage 2.0% 1.7%
Spring-fed 5.0% 5.7%
Drained 11.9% 25.7%

Fish species: walleye;
smallmouth bass

0) absent SWI ordinal 14.6%; 3.0% 25.5%; 6.7%

1) present 2.2%; 3.5% 1.5%; 5.4%
2) common 3.0%; 5.7% 2.0%; 10.1%
3) abundant 0.2%; 7.9% 1.0%; 7.7%

Number of residences no. residences per
lake

SWI, Field continuous 139.7 6 19.0 24.9 6 9.3

Public boat launch presence or absence WDNR, DeLorme
1992

categorical

Motorboats 36.4% 48.3%
Nonmotor 2.5% 3.5%
None 1.2% 8.2%

Distance from highway km WDNR ordinal
,0.25

0.25–5
0.5–1
1–2
2–3
3–4
3–5
5–6
6–7

4.2%
7.7%
9.9%

17.6%
0.5%
0.3%
0.0%
0.0%
0.0%

4.7%
6.9%

10.4%
36.4%

0.0%
0.7%
0.5%
0.0%
0.3%

Notes: SWI 5 Surface Water Inventory database, STORET 5 Storage and Retrieval database, WDNR 5 Wisconsin
Department of Natural Resources, Field 5 data collected in field. Percentage of fish species in each relative abundance class
are reported in the same row, with the value for walleye first.



October 2000 1447PREDICTING EURASIAN WATERMILFOIL PRESENCE

ses followed Omernick et al. (1991) (Table 1). We
ranked bedrock type by chemical weathering capacity
(Wisconsin Geological and Natural History Survey
1987) with a higher score indicating greater capacity:
(1) igneous/metamorphic/volcanic; (5) sandstone; (10)
carbonic. To estimate distance between lakes and high-
ways, we buffered highways (1:100 000) at 0.25 km,
at 0.5 km, and at 1 km intervals thereafter, and inter-
sected buffer polygons with lake centroids.

Models

We selected data to develop and to test models using
a stratified random sampling approach. The data (N 5
404) were stratified into two categories: lakes with
(162) and lakes without (242) milfoil present. Half of
the lakes in each category were selected randomly and
served as a learning data set (N 5 202), and the other
half were used to validate the model. We refer to this
stratified-random use of the 404-lake data set as the
All Lakes (AL) model.

Since lack of dispersal opportunity may result in
models misclassifying lakes with suitable milfoil hab-
itat, we developed a model using a subset (N 5 216;
learning and validation data sets, N 5 108) of lakes
that were likely to have had greater exposure to milfoil
dispersal opportunity. For this model, hereafter referred
to as the Dispersal Exposure (DE) model, we included
all lakes where milfoil was detected in the first two-
thirds of the milfoil invasion period in Wisconsin
(1967–1985), and lakes that were close (,45 km) to
invaded lakes but where milfoil was absent. Forty-five
kilometers is the mean distance plus one standard error
traveled by recreational boaters based on a WDNR sur-
vey (Buchan and Padilla 1998).

Because some data may be unavailable or too costly
to obtain, we developed and tested a series of alter-
native models to determine how well milfoil presence
could be predicted without variables that were selected
into the best fit AL model (AL-1). We individually
removed variables from the data set, repeated our anal-
ysis with all 404 records, and compared results across
AL models (AL-2 through AL-7). We also built an AL
model without interaction terms (AL-7) for comparison
with all other AL models that included them.

Analysis

We used logistic regression, which estimates the
probability that a defined suite of characters accurately
predicts the class of a dichotomous or categorical de-
pendent variable (Press and Wilson 1978, Trexler and
Travis 1993), to test whether milfoil presence/absence
could be predicted by a suite of the above factors. Lo-
gistic regression is a useful analysis tool both because
it enables the use of dichotomous data as dependent
variables and because, unlike the commonly used linear
regression, it does not require multivariate normality
and equal covariance matrices. In logistic regression,
a logit transformation is used to convert each dichot-

omous datum to a linear value (logit), e.g., estimating
a conditional mean for the dependent variable given a
vector of independent parameters. Like linear regres-
sion, slope coefficients for independent parameters rep-
resent the change in the logit for a change in one unit
in a dependent variable. The difference between logit
values (log odds ratio) provides a useful measure of
association: it approximates the probability for the out-
come of interest (milfoil, for example) to be present or
absent given the suite of independent parameters.

To develop and test models we used stepwise for-
ward and backward elimination techniques with the
logit link in SAS (SAS Institute Inc. 1990). Variables
entered the model if their significance level was at least
0.5 and stayed in the model if their significance level
was at least 0.05 when tested by the 22 Log Likelihood
statistic. We specified a probability threshold of 0.5 for
the classification into present or absent categories. Af-
ter variables were chosen for models, we included first
order interaction terms for all combinations of variables
except for public boat launches. Stepwise forward and
backward techniques were again used to determine
combinations of main effects and first order interaction
terms that produced the best fit model. If a variable
was included in a model as an interaction but not as a
main term, we did not reintroduce the main term into
the model. This was done to develop the best predictive
model possible. As a result, analogous to standard lin-
ear regression, the nonsignificance of such main terms
may not be inferred, nor may the functional significance
of variables be determined from their P values (Hosmer
and Lemeshow 1989).

It is important to note that the logistic regression
model biases classification into the larger group defined
by the dependent variable (Hosmer and Lemeshow
1989). In this analysis, the set of records in which
milfoil was absent was 20% larger than the group in
which it was present, so the classification was biased
towards the absent group. We opted in favor of retain-
ing the largest sample size rather than reducing the
amount of data in the absent group to eliminate this
potential bias.

Logistic regression models may be evaluated by a
number of statistical criteria, including significance of
variables, goodness-of-fit, and rates of misclassifica-
tion error. We used the Wald Chi-square test to evaluate
the significance of variables in the models and evalu-
ated models by goodness-of-fit and misclassification
statistics. Goodness-of-fit was assessed with the Akaike
Information Criterion (AIC) (Hosmer and Lemeshow
1989) which adjusts the Log Likelihood statistic for
the number of terms in a model. A lower AIC score
indicates a better model fit. The AIC is similar to an
adjusted r2, taking into account the number of variables
included in a model when evaluating its performance.
We evaluated model predictive capability by the per-
centage of cases in which observed data were mis-
classified, including cases in which milfoil was absent
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but the model predicted milfoil was present (false pos-
itive misclassification), and cases in which milfoil was
present but the model predicted milfoil was absent
(false negative misclassification). While rates of mis-
classification error do not consider the number of var-
iables included in a model, they are particularly useful
for evaluating predictive models. Therefore, we eval-
uated model performances using both statistical criteria
(AIC, rates of misclassification) and costs of model
development and application.

Misclassification statistics can be misleading be-
cause they reflect a process that created a dichotomous
variable from a continuous linear function (logit val-
ues) based on an arbitrary threshold value. Since many
logit values may be close to the threshold chosen to
classify the logit values into presence/absence cate-
gories, the choice of the threshold value could have a
large influence on model accuracy. Therefore, we ex-
plored model sensitivity to the threshold value (0.50),
changing it by 65% (0.525 and 0.475). We further
tested model robustness by treating the validation data
set as a new data set for model development.

Data sampled across geographic areas are often spa-
tially autocorrelated, and when included in regression
analyses, they violate the assumption that data are in-
dependent. In such cases the standard formula used to
calculate variance (mean square error) is incorrect, and
the effect is to attribute greater significance to variables
than exists, and to allow too many significant terms to
enter a model (Legendre 1993). Spatial autocorrelation
may be detected and removed from some models, e.g.,
multiple regression; however, it cannot be removed
from logistic regression models (Cressie 1993). Nev-
ertheless, by examining whether residuals generated
from logistic regression analyses exhibit spatial auto-
correlation the potential magnitude of this effect can
be quantified and P values for variables included in
models can be conservatively interpreted to take the
effect of spatial autocorrelation into account. There-
fore, we examined Pearson and deviance residuals for
spatial autocorrelation by generating correlograms us-
ing maximum distances of 25–250 km (Legendre and
Fortin 1989).

RESULTS

Correlograms calculated for regression residuals did
not exhibit strong spatial autocorrelation (r , 0.3)
when maximum distance was $75 km. Residuals from
data points located ,25 km apart were more correlated
(r # 0.5), but no positive or negative trend was ob-
served. Therefore we did not consider the model as-
sumption of data independence to be violated.

Results from model development for the AL models
and the DE model are summarized in Table 2. Stepwise
forward and backward selection processes converged
on very similar models. Therefore, we report only re-
sults from stepwise forward regressions. The AL-1

model had the lowest AIC score and provided the best
fit to the data based on the function

Logit(p) 5 24.0618 2 3.9644F 1 0.0339AW

1 0.3604FB 1 3.3230BL 2 0.5883BW

1 0.00917A (1)

where p is the probability of milfoil occurrence, F is
percent forest cover in a drainage basin, AW is alka-
linity 3 walleye abundance, FB is percent forest cover
3 bedrock type, BL is presence of a public boat launch,
BW is bedrock 3 walleye abundance, and A is alka-
linity. Using the parameter estimates reported in Table
2, all other models may be reconstructed as shown in
Eq. 1. The probability that a lake will contain milfoil
may be calculated using the following equation:

logit(p)e
p 5 (2)

logit(p)1 1 e

and classifying values according to a specified thresh-
old value.

Using the data set of lakes likely to have had the
longest exposure to milfoil, stepwise forward logistic
regression converged on a model (DE) that included
only two terms found in the AL-1 model, percent forest
cover, and percent forest cover 3 bedrock, and of all
models, was the only one that did not include presence
of a public boat launch (Table 2). Because a different
set of data were used to develop the DE model we can
compare only model predictive capability (not param-
eter estimates) to the AL models. For model devel-
opment (Table 3), the percentage of false positive mis-
classification for the DE model was an improvement
over similar values for the AL models; however the
percentage of false negative misclassification was on
the high end of the range for the AL models. For model
validation, the percentage of false positive misclassi-
fication for DE model validation was on the high end
of the range, and the percentage of false negative mis-
classification was almost twice the worst rates for the
AL models (Table 3).

In addition to splitting our data for the purpose of
model development and validation, we further tested
AL model robustness by treating the validation data
set as a new data set for model development. The AL
robustness test model (detailed results not shown) in-
cluded three of the same terms (percent forest cover,
presence of a public motor boat launch, and percent
forest cover 3 bedrock) as the AL-1 model and in-
cluded bedrock type as a main effect. Because the rates
of false negative (14.0%) and false positive (26.1%)
misclassification of the robustness test model fell with-
in the range of the AL models, we considered them to
be robust.

Most models were insensitive (,3% change in rates
of misclassification errors) to a 65% change in the
threshold value. However, several models (develop-
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TABLE 2. Parameter estimates for logistic regression models predicting the presence and absence of Eurasian watermilfoil
in Wisconsin lakes.

Model
variables

AL-1
(best fit)

AL-2
{2Alka-
linity}

AL-3
{2Public

boat
launch}

AL-4
{2% Forest}

AL-5
{2Bedrock}

AL-6
{2Walleye}

AL-7
{2Interac-

tions} DE

Intercept 24.06 6 1.19
(0.0006)
[0.017]

22.55 6 1.05
(0.0148)
[0.078]

20.50 6 0.33
(0.1267)
[0.604]

24.72 6 1.11
(0.0001)
[0.009]

24.64 6 1.20
(0.0001)
[0.010]

23.69 6 1.11
(0.0009)
[0.025]

24.80 6 1.22
(0.0001)
[0.008]

20.62 6 1.10
(0.5754)
[0.541]

% Forest 23.96 6 0.86
(0.0001)
[0.02]

24.08 6 0.79
(0.0001)
[0.02]

23.82 6 0.82
(0.0001)
[0.02]

NE 21.65 6 0.34
(0.0001)
[0.19]

21.64 6 0.34
(0.0001)
[0.19]

21.68 6 0.34
(0.0001)
[0.19]

236.73 6 11.28
(0.0010)
[0.00]

Public boat
launch

3.32 6 1.08
(0.0020)

[27.74]

3.26 6 1.06
(0.0020)

[26.03]

NE 3.05 6 1.08
(0.0047)

[21.11]

3.30 6 1.10
(0.0028)

[27.00]

3.35 6 1.08
(0.0020)

[28.37]

3.34 6 1.11
(0.0026)

[28.21]

NS

Alkalinity 0.01 6 0.00
(0.0050)
[1.01]

NE NS NS 0.01 6 0.00
(0.0001)
[1.01]

NS 0.01 6 0.00
(0.0001)
[1.01]

NS

% OM NS NS NS NS NS NS NS 215.22 6 4.63
(0.0010)
[0.00]

Walleye
abun-
dance

NS NS NS NS NS NE 0.54 6 0.25
(0.0288)
[1.71]

NS

Smallmouth
bass
abun-
dance

NS NS NS NS NS NS NS 1.11 6 0.33
(0.0008)
[3.04]

Bedrock
type

NS NS NS NS NS NS NS 1.85 6 0.55
(0.0008)
[6.35]

Alkalinity
3 Bed-
rock

NS NE NS 0.001 6 0.00
(0.0001)
[1.00]

NE 0.001 6 0.00
(0.0001)
[1.00]

NE

20.01 6 0.00
(0.0019)
[1.00]

% Forest 3
Bedrock

0.36 6 0.11
(0.0009)
[1.43]

0.40 6 0.10
(0.0001)
[1.49]

0.35 6 0.10
(0.0004)
[1.42]

NE NE NS NE 1.76 6 0.65
(0.0070)
[5.82]

% Forest 3
Alkalinity

NS NE NS NE NS NS NE 0.09 6 0.03
(0.0052)
[1.10]

Bedrock 3
Walleye

20.59 6 0.19
(0.0020)
[0.56]

NS 20.50 6 0.18
(0.0041)
[0.60]

NS NE NE NE NS

% OM 3
Walleye

NS NS NS 1.13 6 0.38
(0.0031)
[3.08]

1.05 6 0.46
(0.0200)
[2.87]

NE NE NS

Alkalinity
3 Wall-
eye

0.03 6 0.01
(0.0003)
[1.03]

NE 0.03 6 0.01
(0.0002)
[1.03]

NS NS NE NE NS

Alkalinity
3 Small-
mouth
bass

NS NE 0.003 6 0.00
(0.0015)
[1.00]

NS NS NS NE NS

Alkalinity
3 % OM

NS NS NS NS NS NS NS 0.06 6 0.02
(0.0040)
[1.06]

Notes: For each variable and model, the following are provided: maximum likelihood parameter estimates 6 1 SE (top
value in column); Wald chi-square P values (a measure of parameter significance, alpha # 0.05) (middle value; in parentheses);
and odds ratio (a measure of association that approximates the likelihood of the outcome modeled, e.g., Eurasian watermilfoil
presence, given an additional unit of a variable [Hosmer and Lemeshow 1989]) (bottom value; in brackets). First-order
interaction terms are noted as the product of two variables. Terms in braces prefaced by a minus sign in column headings
indicate removal of respective variables and associated interaction terms from model development. NS 5 not selected into
model, NE 5 not entered into model. Sample sizes for model development and validation were equal: all-lakes data set (AL
models) N 5 202; dispersal exposure data set (DE model) N 5 108. Abbreviations: % OM 5 percentage of organic matter
in substrate, % Forest 5 percent forest cover in drainage basin.
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TABLE 3. Results of logistic regression model development and validation.

Statistic
AL-1

(best fit)

AL-2
{2Alka-
linity}

AL-3
{2Public

boat
launch}

AL-4
{2%Forest}

AL-5
{2Bedrock}

AL-6
{2Walleye}

AL-7
{2Inter-
actions} DE

Model development
Akaike Information

Criterion
176.51 197.76 190.27 213.94 194.37 195.13 195.68 84.07

Misclassified (%)
False positive
False negative

28.6
10.6

32.4
10.3

27.6
15.7

25.8
23.5

32.3
21.3

30.5
20.0

33.3
22.3

14.7
20.0

Change in percent-
age misclassified

False positive
False negative

22.8, 0
10.4, 0

21.3, 0
20.2, 0

23.5, 10.8
20.8, 10.1

23.6, 11.0
20.5, 21.4

21.6, 10.1
11.4, 21.5

24.8, 12.1
10.3, 20.2

21.7, 21.1
10.7, 23.2

14.7, 16.1
14.3, 21.2

Model validation
Misclassified (%)

False positive
False negative

25.8
11.0

29.0
5.3

34.4
1.3

28.4
21.9

29.1
20.3

25.6
18.5

29.5
21.0

33.3
40.9

Change in percent-
age misclassified

False positive
False negative

21.4, 10.5
10.6, 20.7

24.6, 0
16.3, 0

0, 0
0, 0

21.6, 20.4
10.2, 20.6

20.5, 21.1
10.5, 22.0

21.6, 20.3
10.4, 22.5

20.1, 12.9
13.6, 13.2

0, 11.1
0, 11.2

Notes: Percentage misclassification is included for both model development and validation, but Aikake Information Criteria
(AIC) only reflect model development goodness-of-fit. Lower values for AIC represent better model fit; lower percentage
misclassification represents better model predictive capacity. Sample sizes for model development and validation were equal:
all lakes data set (AL models), N 5 202; dispersal exposure data set (DE model), N 5 108. Terms in braces prefaced by a
minus sign in column headings indicate removal of respective variables and associated interaction terms from model devel-
opment. The percentage misclassified refers to misclassifications of records, based on a 0.5 threshold for classifying logit
values as Eurasian watermilfoil presence/absence; change in the percentages misclassified are based on changing threshold
value 6 5%.

ment data set unless noted) responded more strongly
to the increase in the threshold value. Rates of false
positive or false negative misclassification changed
.3% for models: AL-3 (without data for boat
launches), AL-4 (without percent forest cover), AL-6
(without walleye abundance), AL-2 (without alkalinity;
validation set), and the DE model. Only the AL-7 mod-
el (without interaction terms) and the DE model re-
sponded to the decrease in the classification threshold.

The odds ratios for each of the variables were rel-
atively constant across all models (Table 2). Presence
of a public boat launch exhibited the largest range in
the odds ratio, reflecting predictions that lakes with
public boat launches were 21–28 times more likely to
have milfoil present than lakes without public boat
launches. Odds ratios for percent forest cover in a wa-
tershed basin ranged from 0.20–0.02, reflecting a pre-
diction that lakes in watershed basins with one percent
more forest cover were 5–50 times less likely to be-
come infested by milfoil than lakes with one percent
less forest cover in watershed basins.

DISCUSSION

Invasions of aquatic communities by exotic species
can lead to extensive ecological changes in community
structure and function (Mooney and Drake 1986, Drake
et al. 1989, Lodge 1993, McKnight 1993, Mills et al.
1993, Karatayev et al. 1997). To limit the range or slow

the rate of spread of an invasive species such as Eur-
asian watermilfoil we need to improve our understand-
ing of the parameters affecting its survival and dis-
persal (Hengeveld 1988, 1994, Kareiva 1990, Reichelt
et al. 1990, Buchan and Padilla 1998). This is partic-
ularly true in the Great Lakes region where monitoring
to detect invasives is a costly and difficult process due
to the abundance of lakes and streams, and the high
frequency of recreational boating activity. Models such
as ours that predict invasion likelihood using readily
available data will be valuable tools for increasing ef-
ficiency of monitoring for aquatic invasions.

Importance of variables

We found that variables associated with water quality
characteristics important for milfoil growth, especially
those that affect dissolved carbon, were the most im-
portant factors affecting the probability of finding mil-
foil in a given lake for all of our models. Percent forest
cover in a lake’s drainage basin was the most important
term both because it was highly significant in every
model and because when deliberately eliminated, the
model had the highest AIC score. Nilsson and Hak-
anson (1992) also found land cover type to be the most
important determinant of water chemistry in Swedish
lakes. They concluded that bedrock geology was not
an important determinant of water chemistry in their
study due to the low weathering rates caused by the
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Swedish climate. Other studies investigating lakes in
the midwest and northeast United States (Newton et al.
1987, Rapp et al. 1987) have found bedrock and sur-
ficial geology to be important factors governing water
chemistry, including alkalinity. Local groundwater in-
puts have also been found important in regulating mil-
foil growth and distribution (Lillie and Barko 1990).

The potential for the rate of inorganic carbon avail-
ability to limit the rate of milfoil growth is well doc-
umented (Maberly and Spence 1983, Barko et al. 1986,
Smith and Barko 1990). In our analysis, alkalinity was
an important variable because it entered all models as
either a main term or as an interaction term, and its
removal (AL-2 model) had the second greatest effect
on the AIC score. The AL-2 was the only model in our
analysis in which no new terms were added when al-
kalinity was eliminated, indicating that coarse resolu-
tion landscape variables such as bedrock type, and per-
cent forest cover to a lesser extent, are correlates of (r
5 0.61 and r 5 20.31 respectively), and substitute
measures of alkalinity. The inclusion of at least two of
these variables as either main or interaction terms in
our models supports the importance of inorganic car-
bon as a factor influencing milfoil growth, and dem-
onstrates the ability to represent this factor using both
fine resolution lake measurements, and correlated land-
scape data that are both publicly available and less
expensive. The fact that bedrock type was not an im-
portant main term but was often included as an inter-
action term in our models may be more related to its
correlation with alkalinity and percent forest cover (r
5 20.40) than to the data resolution or the classifi-
cation we used.

Despite studies showing that milfoil is unlikely to
be limited by lake phosphorus concentration (Barko
and Smart 1980, Carignan and Kalff 1980, Mesner and
Narf 1987), we included this variable in our analysis
because it reflects trophic conditions known to influ-
ence milfoil growth (Nichols and Shaw 1986) and be-
cause Omernick et al. (1991) delineated phosphorus
regions based on several factors known to influence
milfoil growth conditions: surficial and bedrock geol-
ogy, soils, vegetation, land use, and land-surface form.
Similar to other variables of coarse resolution not in-
cluded in our models, both the relatively coarse reso-
lution of the phosphorus data, and/or the correlation to
other variables included in the model may have con-
tributed to the insignificance of this variable.

Percent organic matter in sediment, another variable
known to limit milfoil growth (Nichols and Mori 1971,
Madsen 1982), was one of the least two important var-
iables in our analysis. Despite lake-level measurement,
the lack of significance of this variable relative to others
may also be related to data resolution and accuracy.

Although Nichols and Buchan (1997) found that oth-
er (nonmilfoil) macrophyte species were useful indi-
cators of milfoil habitat suitability, we found that the
best-fit model, using a subset of data including lakes

field-surveyed for nonmilfoil macrophyte species, did
not include the macrophyte variable, nor any variables
different than those included in the AL-1 model. A
larger data set may be required to detect the importance
of other macrophyte species.

In our analysis, variables indicating human lake ac-
cess were poorer predictors of milfoil presence/absence
than those affecting milfoil growth. Presence of a pub-
lic boat launch was the only variable in this category
included in any of our models. Despite being included
in all of the AL models, the public boat launch variable
was less significant than either alkalinity or percent
forest cover, and its removal had the least impact on
model fit. Based on this result it is impossible to eval-
uate the relative ecological importance of variables af-
fecting milfoil growth versus those affecting human
access and thus milfoil dispersal. Nor can we conclude
that public boat launch access will be a less important
predictor in other studies using data of different res-
olution and accuracy, or that it is a less ecologically
significant variable. The relatively lower statistical sig-
nificance of public boat launch access in our analysis
could have resulted from the accuracy of our data, and/
or it may indicate the need to identify a data source(s)
and scale(s) that better describe human activities re-
lated to milfoil dispersal. For example, we did not have
enough data on the number of private boat launches on
lakes and thus could not include this variable in our
model development, however, such information could
contribute to the dispersal aspect of predicting milfoil
invasion.

Relative abundance of the two game fish species,
walleye and smallmouth bass, were less important than
variables that would directly influence milfoil growth
conditions, and than those directly indicating human
access. Walleye abundance was included as a main term
in only one model but appeared in most models an
interaction term, most significantly when included with
alkalinity. In comparison to other models, the removal
of fish variables had a moderately negative effect on
the AIC score. Smallmouth bass abundance was one of
the least important variables, rarely being included in
models. Clearly the relative abundance of game fish
species is potentially a useful indicator of human fish-
ing activity. There may be, however, data sets that mea-
sure such activity more accurately, e.g., creel surveys,
or surveys of fishing derbies and recreational boater
activity.

In all cases, statistical significance of variables in-
cluded in models does not necessarily imply ecological
significance or causative factors. Correlations need not
imply causation, as model variable selection may be
influenced by the spatial and/or temporal resolution of
parameter measurement, presence of other correlated
variables, and/or absence of other variables that could
be powerful predictors. Similarly, the presence of in-
teraction terms in models precludes drawing conclu-
sions about the significance or lack of significance of
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main factors, analogous to interaction terms in linear
regression and analysis of variance.

Since variables included in our analysis were largely
based on studies demonstrating their importance for
milfoil growth and dispersal from the Laurentian Great
Lakes region, North America, and Europe, we expect
that our models may be applied in such areas, provided
that parameter estimates are adapted to local condi-
tions, and that the relative importance of variables will
likely remain similar to the relationships discussed in
our analysis. Our modeling approach should certainly
be useful in such regions.

Model sensitivity

The value chosen as the classification threshold for
logistic regression influences the rates of misclassifi-
cation error. We found that, with few exceptions (Table
3), most models were not sensitive to a 65% shift in
the classification threshold. Therefore, small errors in
data collection and/or estimates will probably not have
large impacts on model predictions.

Misclassification error may not be attributed to mod-
el fit alone, because a proportion of misclassification
errors could have resulted from errors in the milfoil
presence/absence data, e.g., surveys might have mis-
takenly identified milfoil plants, or not observed them
in the field. Misidentification, unless biased in one di-
rection, would add noise to the data, but would not bias
the results. However, lack of observation would result
in a higher rate of false positive misclassification error.
Rates of false positive misclassification may also be
high because milfoil may not have had the opportunity
to disperse to some lakes that provide suitable habitat.
It is more likely that errors in our data set resulted from
misidentification, and therefore, we do not believe that
model misclassification errors are significantly biased.
The low rate of false negative misclassification for the
model without alkalinity (AL-2) could be explained if
the range of alkalinity used in this analysis did not
adequately represent the extremes where this variable
determines milfoil absence or presence. The low rate
of false negative misclassification when validating the
model in which boat launch data were eliminated (AL-
3) likely reflects the fact that milfoil existed in four of
18 lakes without public boat launches. In each of these
cases, fishing was common from private boat launches
and/or lake residents had visited other lakes with their
boats (lake residents, personal communication).

Model evaluation and alternative
management strategies

Choosing the best model to predict the likelihood of
milfoil invasion depends on management objectives
and constraints; managers may need to balance the ob-
jective of preventing further invasions with costs in-
volved in monitoring large numbers of lakes. Moni-
toring costs may be considered both in terms of time
involved to monitor a large number of lakes, and the

expense of obtaining measurements of variables to in-
clude in models. Unless expensive variables substan-
tially improve the accuracy of model predictions, their
cost may not be justified. Typically, variables such as
bedrock, substrate, and land use type, and public boat
launch location exist in publicly available databases,
and are therefore inexpensive to include in models. Fish
abundance and, to a lesser extent, lake alkalinity data
are less likely to be available for all lakes, and because
these variables must be measured in individual lakes,
they are more expensive.

Decisions about what is the best model or which are
the best variables to include will depend on specific
management objectives and priorities as well as limi-
tations. Given our information on the relative effec-
tiveness of different models with different variables we
can make recommendations of the best models to use
given different management objectives or constraints.

Management objective: preventing any
further invasions

If a prime concern is to prevent milfoil from invading
more lakes, and monitoring cost is less important, a
manager should choose a model with a low rate of false
negative misclassification. Lowest mean rates of false
negative misclassification were achieved by the AL-1
model (11.0%) and by the AL-2 (7.8%) and AL-3
(8.5%) models.

Since mean rates of false positive misclassification
error for both development and validation data sets for
these three models (24.0–31.4%) did not vary as much
as the mean rates of false negative misclassification,
choosing any of these models would not incur signif-
icantly greater costs in terms of monitoring time. With
the exception of the AL-2 model, these models were
costly in terms of the fine-resolution input data required
to run the models. The AL-2 model was the most par-
simonious, including only three terms and three data
sources: the percent of the watershed forested, presence
and type of public boat launch, and percent forest 3
bedrock type.

For the purpose of predicting where milfoil is most
likely to establish, the significance of variables in a
model is not as great a concern as the rates of mis-
classification error. However, if managers are interested
in determining the strength of the relationship between
individual variables and the likelihood of milfoil es-
tablishment, it is important for them to examine good-
ness-of-fit scores and individual P values. The AL-1
model had the lowest goodness-of-fit score, indicating
that, collectively, variables included in this model had
the greatest significance. The AL-3 model had the sec-
ond lowest AIC score, whereas the score for the AL-
2 model was on the upper end of the range for all
models, indicating a weaker relationship between the
parameter estimates and the likelihood of milfoil es-
tablishment.
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Management objective: reducing monitoring costs

If resource managers want to reduce the amount of
time spent monitoring lakes and can accept a higher
risk of undetected invasions occurring, then it is ap-
propriate to use a model with lower rates of false pos-
itive misclassification and higher rates of false negative
misclassification. Choosing a better model on this basis
alone was not as clear an objective to meet, because
mean rates of false positive misclassification did not
vary as much as mean rates of false negative misclas-
sification. However the AL-1, AL-4, AL-6, and DE
models, had the lowest mean rates of false positive
misclassification. The least expensive model to use
would be the AL-2; which included percent of water-
shed forested, public boat launch presence, and bedrock
type; followed by the AL-6 which included additionally
alkalinity. The AL-2 would also be the preferable to
the AL-6 model due to its lower rate of false negative
misclassification, and only slightly higher AIC score.

Management objective: preventing most invasions
and keeping monitoring costs at a moderate level

An alternative strategy that balances the costs and
benefits of each type of misclassification error is to
choose a model with moderate rates of false positive
and negative misclassification errors and few expensive
landscape variables. The AL-2 model again fulfills this
management criteria because it includes few, inexpen-
sive variables, has relatively low rates of false negative
misclassification, and its mean rate of false positive
misclassification, though on the upper end of the range
for all models, does not greatly differ from other mod-
els.

Conclusions

We developed and compared alternative models to
predict habitats that are most likely to support milfoil
growth and to indicate which variables have the great-
est predictive power. Our research shows that inex-
pensive landscape data, typically available in databases
managed by state resource management agencies, can
be used to develop predictions of habitat suitability for
an invasive species like milfoil. By using a logistic
regression model, we were able to establish likelihoods
that individual lakes will support milfoil growth. Fac-
tors associated with water quality known to affect mil-
foil growth, especially the percent forest cover in lake
watersheds, were more important predictors than fac-
tors primarily associated with human activity and dis-
persal potential. Because these factors are generally
important for milfoil growth, our results should be gen-
eralizable across similar landscapes throughout the
Laurentian Great Lakes region and other parts of the
world with similar habitats. Application of our logistic
regression models may be used to prioritize which lakes
need to be monitored most intensively and frequently.
The model converged on by stepwise forward logistic

regression provided the best fit to the data. However,
the model without alkalinity (AL-2) included fewer
variables that were both relatively inexpensive and easy
to obtain, and also resulted in low rates of misclassi-
fication. For each management objective, using the AL-
2 model as a management tool in Wisconsin would
result in the lowest risk of undetected invasions at the
lowest cost. The same may not be true, however, when
the regression models are applied in other regions; re-
source managers may have to choose between models
depending on the prioritization of monitoring budget
versus invasion risk.

If used in conjunction with interlake dispersal dy-
namics, the AL-2 model would be an even more pow-
erful management tool. Patterns of milfoil habitat suit-
ability among lakes can serve as a backdrop on which
patterns of dispersal dynamics are mapped or they can
be directly incorporated into models as factors influ-
encing dispersal success (Buchan 1997). Lakes with
the greatest risk of being invaded will be those with
the highest likelihood of both providing suitable milfoil
habitat and being recipients of the greatest frequency
of recreational boater traffic (Buchan 1997).
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